348 research outputs found

    Mark 4A antenna control system data handling architecture study

    Get PDF
    A high-level review was conducted to provide an analysis of the existing architecture used to handle data and implement control algorithms for NASA's Deep Space Network (DSN) antennas and to make system-level recommendations for improving this architecture so that the DSN antennas can support the ever-tightening requirements of the next decade and beyond. It was found that the existing system is seriously overloaded, with processor utilization approaching 100 percent. A number of factors contribute to this overloading, including dated hardware, inefficient software, and a message-passing strategy that depends on serial connections between machines. At the same time, the system has shortcomings and idiosyncrasies that require extensive human intervention. A custom operating system kernel and an obscure programming language exacerbate the problems and should be modernized. A new architecture is presented that addresses these and other issues. Key features of the new architecture include a simplified message passing hierarchy that utilizes a high-speed local area network, redesign of particular processing function algorithms, consolidation of functions, and implementation of the architecture in modern hardware and software using mainstream computer languages and operating systems. The system would also allow incremental hardware improvements as better and faster hardware for such systems becomes available, and costs could potentially be low enough that redundancy would be provided economically. Such a system could support DSN requirements for the foreseeable future, though thorough consideration must be given to hard computational requirements, porting existing software functionality to the new system, and issues of fault tolerance and recovery

    CSI technology validation on an LSS ground experiment facility

    Get PDF
    The test bed developed at JPL for experimental evaluation of new technologies for the control of large flexible space structures is described. The experiment consists of a flexible spacecraft dynamic simulator, sensors, actuators, a microcomputer, and an advanced programming environment. The test bed has been operational for over a year, and thus far nine experiments were completed or are currently in progress. Several of these experiments were reported at the 1987 CSI conference, and several recent ones are documented in this paper, including high order adaptive control, non-parametric system identification, and mu-synthesis robust control. An aggressive program of experiments is planned for the forseeable future

    Application of inertial instruments for DSN antenna pointing and tracking

    Get PDF
    The feasibility of using inertial instruments to determine the pointing attitude of the NASA Deep Space Network antennas is examined. The objective is to obtain 1 mdeg pointing knowledge in both blind pointing and tracking modes to facilitate operation of the Deep Space Network 70 m antennas at 32 GHz. A measurement system employing accelerometers, an inclinometer, and optical gyroscopes is proposed. The initial pointing attitude is established by determining the direction of the local gravity vector using the accelerometers and the inclinometer, and the Earth's spin axis using the gyroscopes. Pointing during long-term tracking is maintained by integrating the gyroscope rates and augmenting these measurements with knowledge of the local gravity vector. A minimum-variance estimator is used to combine measurements to obtain the antenna pointing attitude. A key feature of the algorithm is its ability to recalibrate accelerometer parameters during operation. A survey of available inertial instrument technologies is also given

    Improvement of normalization methods for eigenvector derivatives

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76868/1/AIAA-11108-459.pd

    Higher order eigenpair perturbations

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76914/1/AIAA-11149-583.pd

    Flexible structure control laboratory development and technology demonstration

    Get PDF
    An experimental structure is described which was constructed to demonstrate and validate recent emerging technologies in the active control and identification of large flexible space structures. The configuration consists of a large, 20 foot diameter antenna-like flexible structure in the horizontal plane with a gimballed central hub, a flexible feed-boom assembly hanging from the hub, and 12 flexible ribs radiating outward. Fourteen electrodynamic force actuators mounted to the hub and to the individual ribs provide the means to excite the structure and exert control forces. Thirty permanently mounted sensors, including optical encoders and analog induction devices provide measurements of structural response at widely distributed points. An experimental remote optical sensor provides sixteen additional sensing channels. A computer samples the sensors, computes the control updates and sends commands to the actuators in real time, while simultaneously displaying selected outputs on a graphics terminal and saving them in memory. Several control experiments were conducted thus far and are documented. These include implementation of distributed parameter system control, model reference adaptive control, and static shape control. These experiments have demonstrated the successful implementation of state-of-the-art control approaches using actual hardware

    Growth factor restriction impedes progression of wound healing following cataract surgery: identification of VEGF as a putative therapeutic target

    Get PDF
    Secondary visual loss occurs in millions of patients due to a wound-healing response, known as posterior capsule opacification (PCO), following cataract surgery. An intraocular lens (IOL) is implanted into residual lens tissue, known as the capsular bag, following cataract removal. Standard IOLs allow the anterior and posterior capsules to become physically connected. This places pressure on the IOL and improves contact with the underlying posterior capsule. New open bag IOL designs separate the anterior capsule and posterior capsules and further reduce PCO incidence. It is hypothesised that this results from reduced cytokine availability due to greater irrigation of the bag. We therefore explored the role of growth factor restriction on PCO using human lens cell and tissue culture models. We demonstrate that cytokine dilution, by increasing medium volume, significantly reduced cell coverage in both closed and open capsular bag models. This coincided with reduced cell density and myofibroblast formation. A screen of 27 cytokines identified nine candidates whose expression profile correlated with growth. In particular, VEGF was found to regulate cell survival, growth and myofibroblast formation. VEGF provides a therapeutic target to further manage PCO development and will yield best results when used in conjunction with open bag IOL designs

    Index assignment for multiple description repair in distributed storage systems

    Get PDF
    Distributed storage systems have been receiving increasing attention lately due to the developments in cloud and grid computing. Furthermore, a major part of the stored information comprises of multimedia, whose content can be communicated even with a lossy (non-perfect) reconstruction. In this context, Multiple Description Lattice Quantizers (MDLQ) can be employed to encode such sources for distributed storage and store them across distributed nodes. Their inherent properties yield that having access to all nodes gives perfect reconstruction of the source, while the reconstruction quality decreases gracefully with fewer available nodes. If a set of nodes fails, lossy repair techniques could be applied to reconstruct the failed nodes from the available ones. This problem has mostly been studied with the lossless (perfect) reconstruction assumption. In this work, a general model, Multiple Description Lattice Quantizer with Repairs (MDLQR), is introduced that encompasses the lossy repair problem for distributed storage applications. New performance measures and repair techniques are introduced for MDLQR, and a non-trivial identity is derived, which is related to other results in the literature. This enables us to find the optimal encoder for a certain repair technique used in the MDLQR. Furthermore, simulation results are used to evaluate the performance of the different repair techniques. © 2014 IEEE

    The Phoenix Mars Landing: An Initial Look

    Get PDF
    This presentation was part of the session : Ongoing and Proposed EDL Technology DevelopmentSixth International Planetary Probe WorkshopNASA's Phoenix Mars Lander will make a landing on Mars on May 25th, 2008. Following on from the overview of the Phoenix entry, descent and landing (EDL) system given at IPPW5, an initial look at the Phoenix landing will be presented, highlighting the salient, high level events that occurred during EDL. Initial EDL flight reconstruction results will be presented, along with a retelling of the flight operations events that occurred on approach to Mars, and during the landing event itself. Note: Given the short time duration between the Phoenix landing and IPPW6, only a presentation will be prepared for the workshop.NAS

    Multivalued SK-contractions with respect to b-generalized pseudodistances

    Get PDF
    A new class of multivalued non-self-mappings, called SK-contractions with respect to b-generalized pseudodistances, is introduced and used to investigate the existence of best proximity points by using an appropriate geometric property. Some new fixed point results in b-metric spaces are also obtained. Examples are given to support the usability of our main result
    corecore